Ancient Calendars
Celestial bodies — the Sun, Moon, planets, and stars — have provided us a reference for measuring the passage of time throughout our existence. Ancient civilizations relied upon the apparent motion of these bodies through the sky to determine seasons, months, and years.We know little about the details of timekeeping in prehistoric eras, but wherever we turn up records and artifacts, we usually discover that in every culture, some people were preoccupied with measuring and recording the passage of time. Ice-age hunters in Europe over 20,000 years ago scratched lines and gouged holes in sticks and bones, possibly counting the days between phases of the moon. Five thousand years ago, Sumerians in the Tigris-Euphrates valley in today's Iraq had a calendar that divided the year into 30 day months, divided the day into 12 periods (each corresponding to 2 of our hours), and divided these periods into 30 parts (each like 4 of our minutes). We have no written records of Stonehenge, built over 4000 years ago in England, but its alignments show its purposes apparently included the determination of seasonal or celestial events, such as lunar eclipses, solstices and so on.
The earliest Egyptian calendar [Ref.] was based on the moon's cycles, but later the Egyptians realized that the "Dog Star" in Canis Major, which we call Sirius, rose next to the sun every 365 days, about when the annual inundation of the Nile began. Based on this knowledge, they devised a 365 day calendar that seems to have begun around 3100 BCE (Before the Common Era), which thus seems to be one of the earliest years recorded in history.
Before 2000 BCE, the Babylonians (in today's Iraq) used a year of 12 alternating 29 day and 30 day lunar months, giving a 354 day year. In contrast, the Mayans of Central America relied not only on the Sun and Moon, but also the planet Venus, to establish 260 day and 365 day calendars. This culture and its related predecessors spread across Central America between 2600 BCE and 1500 CE, reaching their apex between 250 and 900 CE. They left celestial-cycle records indicating their belief that the creation of the world occurred in 3114 BCE. Their calendars later became portions of the great Aztec calendar stones. Our present civilization has adopted a 365 day solar calendar with a leap year occurring every fourth year (except century years not evenly divisible by 400).
Early Clocks
Not until somewhat recently (that is, in terms of human history) did people find a need for knowing the time of day. As best we know, 5000 to 6000 years ago great civilizations in the Middle East and North Africa began to make clocks to augment their calendars. With their attendant bureaucracies, formal religions, and other burgeoning societal activities, these cultures apparently found a need to organize their time more efficiently.Sun Clocks
The Sumerian culture was lost without passing on its knowledge, but the Egyptians were apparently the next to formally divide their day into parts something like our hours. Obelisks (slender, tapering, four-sided monuments) were built as early as 3500 BCE. Their moving shadows formed a kind of sundial, enabling people to partition the day into morning and afternoon. Obelisks also showed the year's longest and shortest days when the shadow at noon was the shortest or longest of the year. Later, additional markers around the base of the monument would indicate further subdivisions of time.Another Egyptian shadow clock or sundial, possibly the first portable timepiece, came into use around 1500 BCE. This device divided a sunlit day into 10 parts plus two "twilight hours" in the morning and evening. When the long stem with 5 variably spaced marks was oriented east and west in the morning, an elevated crossbar on the east end cast a moving shadow over the marks. At noon, the device was turned in the opposite direction to measure the afternoon "hours."
The merkhet, the oldest known astronomical tool, was an Egyptian development of around 600 BCE. A pair of merkhets was used to establish a north-south line (or meridian) by aligning them with the Pole Star. They could then be used to mark off nighttime hours by determining when certain other stars crossed the meridian.
In the quest for better year-round accuracy, sundials evolved from flat horizontal or vertical plates to more elaborate forms. One version was the hemispherical dial, a bowl-shaped depression cut into a block of stone, carrying a central vertical gnomon (pointer) and scribed with sets of hour lines for different seasons. The hemicycle, said to have been invented about 300 BCE, removed the useless half of the hemisphere to give an appearance of a half-bowl cut into the edge of a squared block. By 30 BCE, Vitruvius could describe 13 different sundial styles in use in Greece, Asia Minor, and Italy.
Elements of a Clock
Before we continue describing the evolution of ways to mark the passage of time, perhaps we should broadly define what constitutes a clock. All clocks must have two basic components:- a regular, constant or repetitive process or action to mark off equal increments of time. Early examples of such processes included the movement of the sun across the sky, candles marked in increments, oil lamps with marked reservoirs, sand glasses (hourglasses), and in the Orient, knotted cords and small stone or metal mazes filled with incense that would burn at a certain pace. Modern clocks use a balance wheel, pendulum, vibrating crystal, or electromagnetic waves associated with the internal workings of atoms as their regulators.
- a means of keeping track of the increments of time and displaying the result. Our ways of keeping track of the passage of time include the position of clock hands and digital time displays.
Water Clocks
Water clocks were among the earliest timekeepers that didn't depend on the observation of celestial bodies. One of the oldest was found in the tomb of the Egyptian pharaoh Amenhotep I, buried around 1500 BCE. Later named clepsydras ("water thieves") by the Greeks, who began using them about 325 BCE, these were stone vessels with sloping sides that allowed water to drip at a nearly constant rate from a small hole near the bottom. Other clepsydras were cylindrical or bowl-shaped containers designed to slowly fill with water coming in at a constant rate. Markings on the inside surfaces measured the passage of "hours" as the water level reached them. These clocks were used to determine hours at night, but may have been used in daylight as well. Another version consisted of a metal bowl with a hole in the bottom; when placed in a container of water the bowl would fill and sink in a certain time. These were still in use in North Africa in the 20th century.More elaborate and impressive mechanized water clocks were developed between 100 BCE and 500 CE by Greek and Roman horologists and astronomers. The added complexity was aimed at making the flow more constant by regulating the pressure, and at providing fancier displays of the passage of time. Some water clocks rang bells and gongs; others opened doors and windows to show little figures of people, or moved pointers, dials, and astrological models of the universe.
A Macedonian astronomer, Andronikos, supervised the construction of his Horologion, known today as the Tower of the Winds, in the Athens marketplace in the first half of the first century BCE. This octagonal structure showed scholars and shoppers both sundials and mechanical hour indicators. It featured a 24 hour mechanized clepsydra and indicators for the eight winds from which the tower got its name, and it displayed the seasons of the year and astrological dates and periods. The Romans also developed mechanized clepsydras, though their complexity accomplished little improvement over simpler methods for determining the passage of time.
In the Far East, mechanized astronomical/astrological clock making developed from 200 to 1300 CE. Third-century Chinese clepsydras drove various mechanisms that illustrated astronomical phenomena. One of the most elaborate clock towers was built by Su Sung and his associates in 1088 CE. Su Sung's mechanism incorporated a water-driven escapement invented about 725 CE. The Su Sung clock tower, over 30 feet tall, possessed a bronze power-driven armillary sphere for observations, an automatically rotating celestial globe, and five front panels with doors that permitted the viewing of changing manikins which rang bells or gongs, and held tablets indicating the hour or other special times of the day.
Since the rate of flow of water is very difficult to control accurately, a clock based on that flow could never achieve excellent accuracy. People were naturally led to other approaches.
A Revolution in Timekeeping
In Europe during most of the Middle Ages (roughly 500 CE to 1500 CE), technological advancement virtually ceased. Sundial styles evolved, but didn't move far from ancient Egyptian principles.During these times, simple sundials placed above doorways were used to identify midday and four "tides" (important times or periods) of the sunlit day. By the 10th century, several types of pocket sundials were used. One English model even compensated for seasonal changes of the Sun's altitude.
Then, in the first half of the 14th century, large mechanical clocks began to appear in the towers of several large Italian cities. We have no evidence or record of the working models preceding these public clocks, which were weight-driven and regulated by a verge-and-foliot escapement. Variations of the verge-and-foliot mechanism reigned for more than 300 years, but all had the same basic problem: the period of oscillation of the escapement depended heavily on the amount of driving force and the amount of friction in the drive. Like water flow, the rate was difficult to regulate.
Another advance was the invention of spring-powered clocks between 1500 and 1510 by Peter Henlein of Nuremberg. Replacing the heavy drive weights permitted smaller (and portable) clocks and watches. Although they ran slower as the mainspring unwound, they were popular among wealthy individuals due to their small size and the fact that they could be put on a shelf or table instead of hanging on the wall or being housed in tall cases. These advances in design were precursors to truly accurate timekeeping.
Accurate Mechanical Clocks
In 1656, Christiaan Huygens, a Dutch scientist, made the first pendulum clock, regulated by a mechanism with a "natural" period of oscillation. (Galileo Galilei is credited with inventing the pendulum-clock concept, and he studied the motion of the pendulum as early as 1582. He even sketched out a design for a pendulum clock, but he never actually constructed one before his death in 1642.) Huygens' early pendulum clock had an error of less than 1 minute a day, the first time such accuracy had been achieved. His later refinements reduced his clock's error to less than 10 seconds a day.Around 1675, Huygens developed the balance wheel and spring assembly, still found in some of today's wristwatches. This improvement allowed portable 17th century watches to keep time to 10 minutes a day. And in London in 1671, William Clement began building clocks with the new "anchor" or "recoil" escapement, a substantial improvement over the verge because it interferes less with the motion of the pendulum.
In 1721, George Graham improved the pendulum clock's accuracy to 1 second per day by compensating for changes in the pendulum's length due to temperature variations. John Harrison, a carpenter and self-taught clock-maker, refined Graham's temperature compensation techniques and developed new methods for reducing friction. By 1761, he had built a marine chronometer with a spring and balance wheel escapement that won the British government's 1714 prize (worth more than $10,000,000 in today's currency) for a means of determining longitude to within one-half degree after a voyage to the West Indies. It kept time on board a rolling ship to about one-fifth of a second a day, nearly as well as a pendulum clock could do on land, and 10 times better than required to win the prize.
Over the next century, refinements led in 1889 to Siegmund Riefler's clock with a nearly free pendulum, which attained an accuracy of a hundredth of a second a day and became the standard in many astronomical observatories. A true free-pendulum principle was introduced by R.J. Rudd about 1898, stimulating development of several free-pendulum clocks. One of the most famous, the W.H. Shortt clock, was demonstrated in 1921. The Shortt clock almost immediately replaced Riefler's clock as a supreme timekeeper in many observatories. This clock contained two pendulums, one a slave and the other a master. The slave pendulum gave the master pendulum the gentle pushes needed to maintain its motion, and also drove the clock's hands. This allowed the master pendulum to remain free from mechanical tasks that would disturb its regularity.
Quartz Clocks
The performance of the Shortt clock was overtaken as quartz crystal oscillators and clocks, developed in the 1920s and onward, eventually improved timekeeping performance far beyond that achieved using pendulum and balance-wheel escapements.Quartz clock operation is based on the piezoelectric property of quartz crystals. If you apply an electric field to the crystal, it changes its shape, and if you squeeze it or bend it, it generates an electric field. When put in a suitable electronic circuit, this interaction between mechanical stress and electric field causes the crystal to vibrate and generate an electric signal of relatively constant frequency that can be used to operate an electronic clock display.
Quartz crystal clocks were better because they had no gears or escapements to disturb their regular frequency. Even so, they still relied on a mechanical vibration whose frequency depended critically on the crystal's size, shape and temperature. Thus, no two crystals can be exactly alike, with just the same frequency. Such quartz clocks and watches continue to dominate the market in numbers because their performance is excellent for their price. But the timekeeping performance of quartz clocks has been substantially surpassed by atomic clocks.
No comments:
Post a Comment